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Midband solitons in nonlinear photonic crystal resonators
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We investigate cavity solitons in nonlinear photonic crystal resonators, i.e., in the nonlinear resonators with

the refractive index periodically modulated in the transverse direction. We study several families of the cavity
solitons: (1) “normal,” and(2) “staggered” solitons, similar to those in conservative nonlinear photonic crys-
tals; (3) “midband” solitons, predicted recently in dissipative nonlinear photonic cryfitalStaliunas, Phys.
Rev. Lett. 91, 053901(2003]; and(4) “double head” cavity solitons not reported before. We investigate the
solitons by (1) numerically solving the full microscopic model explicitly accounting for the small scale
refractive index modulation, an@) adopting a “mean field” approximation, e.g., eliminating the small scale
refractive index modulation.
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[. INTRODUCTION spatially modulated refraction index on micron and submi-
) ] ] ~__ cron scale, i.e., in nonlinear photonic crystal resonators.
Cavity solitons(CS), sometimes also named dissipative  another motivation follows from the results of the recent
spatial solitons, have been theoretically predicted for generajtudies of spatial solitons in nonlineaonresonatorphoto-
case of bistable nonlinear optical resonafdis and for dif-  nic crystals[10], where the nonlineaspatial propagation of
ferent particular bistable nonlinear optical systems: laserghe fields in the media with spatially modulated refraction
with saturable absorb€i?], two-photon laserg3], optical index is studied. Recently the discrete Kerr-type solitons in
parametric oscillatorg4], semiconductor microresonators propagation in materials witly® nonlinearity[11], as well
[5]. In several systems the CSs have been so far demoms discrete parametric solitons in propagation in materials
strated experimentally: in lasers with saturable absor@drs with x® nonlinearity[12] have been shown. These studies
in four wave mixing[7], and in semiconductor microresona- reveal a variety of families of discrete solitons. The basic
tors [8]. The interest on CS is in particular stimulated by ones are(1) “normal” solitons with the carrier spatial wave
their potential application for parallel information processingnumber being around zero. They are the analogs of the spa-
and storagd9]. The CS being bistable can be switched ontial solitons in homogeneous nonlinear media) “band-

and off, therefore they can serve as elementary memory el&dge,” or “staggered” solitons, with the carrier spatial wave

ment (can store one bit of informationThe CSs can be number being around half of the modulation wave number.
excited in arbitrary place in the transverse plane of the reso}.—he ;'?Id phase cha?r?es ;ts value(jmble;ttween tgtetr:nod#Ia-t_
nator, which gives additional possibilities of their manipula- -on 'MNYES across e staggered soliton, and the etfective
tion and application. diffraction is of negative sign. In addition to these basic “nor-

. . mal” and “staggered” solitons, several intermediate discrete
The most of the previous studies of G359 assume that soliton states were reportgtizoology” of discrete solitons

the nonlinear resonators are homogengous in lateral 'dire?g]). These results allow to expect that also the cavity soli-
tion. _Idn fagt the lateral bqun(iaryhco?dl_tlons_ darr]e ?orr]netlme ons in nonlinear photonic crystal resonators can display a
considered, €.g., accounting for the finite width of the apery ;e of shapes. Indeed several kinds of cavity solitons

ture of the optical system. Here, under Ia_teral homogenei%ave been recently predicted in photonic crystal resonators
we mean that the bulk area of the system is homogeneous %4]: These are “normal” and “staggered” cavity solitons,

the spatial scale of the width of soliton, or less. Recent teChéimilar to those in conservative nonlinear photonic crystals,

nologies allow manufacturing nonlinear resonators Wwith, o qascribed above. These are also narrow “midband” soli-
some parametergefraction index, nonlinearity, losselt- — yqng \yith the carrier spatial frequency between those for the
erally modulated on the spatial scale of a micron and less, ormal” and for the “staggered” solitons. The physical ra-

.e., on the scale much less than the typical spatial size Qj,h516 pehind the midband solitons is that if the effective
solitons. The typical size of the experimentally observed i .o tion is of positive sign for normal solitons, and of
solitons is s_everal tenths of microns: in the_ever realize egative sign for band-edge ones, then there should be a
smallest soliton supporting systems, the semiconductor Mi5ins \where the effective diffraction is zero, if the diffraction
croresonators, with full cavity length~5 um, the width of - yohendence curve is continuous. The spatial spectra of the
the so||lton 'S.X°z15 pm as observedllr[8]..The rapujly . “midband” soliton are centered around that zero-diffraction
advancing micro- and nanotechnologies give a motivation i+ i e |ocated close to the middle of the band of ex-
for our study of cavity solitons in nonlinear resonators with ;o 404 wz,ive$hence the term midband solitonsince the
effective diffraction vanishes for the midband CSs, their size
is no more limited by diffraction, but can be drastically re-
*Email address: kestutis.staliunas@icrea.es duced, comparing with the width of the “normal” solitons,
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i.e., literally to one wavelengtfiL4]. The latter result gives a
strong motivation to our studies, since the reduction of the
size of the soliton is very desirable for technological appli-
cations.

In the present article we give a detailed numerical study
of the above described families of the cavity solitons in non-
linear photonic crystal resonators. We also report a new fam-
ily of the cavity solitons—the “double head” one.

Part of the results is obtained by a direct numerical inte-
gration of the equations for a laser with a saturable absorber
for the laterally modulated refraction index. Thimicro-
scopig model explicitly accounts for the small scale refrac-

tive index modulation. We chose this particular system of a . |A(k)|2 | i‘f’i

laser with saturable absorber, because mathematically it is 100 1 b) I ﬂ :

perhaps the simplest system, and physically is the most para- 107 A | |

digmatic model for the optical bistability and for the C2%. 1076 : / \ I R

These results, however, can be generalized to other systems | /ﬁ\ / \ I/ \I / \ /\

supporting cavity solitons. 0 / \ / ‘ ’ \ / \
Additionally we use a kind of “mean field” approach for 10 , |

the study of soliton properties, i.e., we reduce the full micro- \/ \'{ v \\

scopic(small spatial scalamodel by the equation accounting P2 -1 0 1 2 Vk

for the large scale spatial variation of the fields. The modu-

lation of the refraction index is then accounted by respec- FIG. 1. The envelopga) and the spatial power specifi) for
tively modified diffraction of the system. This results in a the normal cavity solitons, as obtained by numerical integration of
substantial reduction of the complexity, allows more precisgl). Dashed lines represent the envelopes of the homogeneous field
studies of the asymptotic shapes of the CSs, also leads &mponent of the soliton, obtained by filtering out spatial spectral
analytical expressions of the soliton parametarparticular componentgretaining the spectral components as indicated by ar-

of the width depending on the parameters of the system. oW in (b)). The parameters aré;=0.01, ap=5, Do=1.7,d=1, q
=15.89,m=25[f=2m/(d¢?)=0.199.

II. MODEL
The class A lasers with fast saturable absorber in paraxiathe longitudinal direction was neglected. This mean field ap-

nators, like used to generate spatial solitons, e.d8JinThe
numerical integration was performed using a split-step tech-
nigue: by changing from the transverse space domain to the
- spatial Fourier domain in every integration step, which im-
XA(FY). 1) poses periodic boundary conditions in transverse space of the

The right-hand side contains the terms of saturating gairf,€sonator.
linear losses, saturating losses, diffraction, diffusion, and
spatially varying refractive indexV(r)=m(e%*+e7%), re-
spectively.D is the unsaturated gaimy, is the unsaturated
absorption,l, is the saturation intensity of the absorber, Figures 1-4 show the typical spatial profilgs and spa-
=LAQ/(4w) is the diffraction coefficientA is the wave- tial power spectrgb) of stable cavity solitons, as obtained by
length of the radiationL. and Q are the full length and fi- numerical integration of1).
nesse of the resonajog is the diffusion coefficientusually (1) Normal soliton. This is the only possible family of
g<d), andm andq are the amplitude and the wave numbersolitons in the absence of spatial modulation of refraction
of the refractive index modulation in the transverse directionndex. When the refractive index is spatially modulageith
of resonator. See, e.g., alg?) for detailed description of the the spatial wave-numbey), the modulation fringes of the
model(1). soliton envelope appedfFig. 1(a)] with the depth propor-
The diffusion term lumps together the material diffusion tional to the amplitude of the refraction index modulatian
(e.g., diffusion of population inversignthe limited width of ~ In a limit of weak modulationm/(dg?) <1 the modulation
the gain line, as well as the spatial frequency filtering. Incan be considered perturbatively. The spatial power spectrum
most systems diffusion can be considered small comparefFig. 1(b)] consists of a strong central componéat spatial
with the diffraction (e.g., if the resonator mode is narrow carrier frequency and of progressively decreasing side-
compared with the atomic gain linen our numerical study bands. The effective diffraction of the radiation field is of
the diffusion/diffraction ratio is fixed t@/d=10%, but the positive sign, and is only weakigperturbatively effected by
results depend only negligibly on this ratio. the lateral modulation of refraction index.
The field is considered to be dependent on one transverse The dashed line in Fig.(&) shows the envelope of the
dimension, and evolving in time. The field variation alongsoliton on a large spatial scale. The large scale soliton enve-

(#)) _( Do

— 1 — CYO
“\1+]A2 1+|A%1,

pr +idV2+gV2+iV(F))

Ill. NUMERICAL STUDY OF THE FULL MODEL
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FIG. 2. The envelopéa) and the spatial power spectia) of a
staggered soliton. Everything, except for the initial conditions, is as

in Fig. 1 FIG. 4. The envelopé) and the spatial power specits of the

double head soliton. Everything, except for the initial conditions, is
. o ) as in Fig. 1.

lope was obtained by filtering out the sidebands from the

spatial spectrum, and, using inverse Fourier transform, régme normal one for the used parameter(sete the different
covering the soliton constituents attributed to dominatingspatia| scales in Fig. 1 and Fig). The staggered soliton has
spatial frequencyretaining the band of spatial frequencies asp,, analog in laterally homogeneous systdthe small scale

indicated by arrow in Fig. (b)]. _ spatial modulation by 100% cannot be considered as a small
(2) Staggered solitogFig. 2). The field phase changes by peryrhation of soliton shapeand the effective diffraction of

« between the neighboring modulation fringes, therefore the soliton. as shown below. is of a negative sign.

field amplitude _is modulated by 100%. The s_patial POWer (3) Midband soliton(Fig. 3). The spatial power spectrum

spectrum contains two strong components with the spatigloniains a strong component centered at a spatial frequency

frequencies aly~ +q/2. The staggered soliton is wider than g ko<q/2, i.e., at the wave number corresponding to zero

diffraction. (Recall that the effective diffraction for normal

[ |A(x)|2 soliton is positive, and for staggered sc_JIiton is ne_gativc_a, th_en
08 L there should exist a wave number with zero diffraction in
[ between, if the dispersion curve is continuguse soliton is
06 L in general narrower in space than the normal and the stag-
X a) ) gered ones. Differently from the normal and the staggered
04 L i solitons the midband soliton is never stationary, but moves
i with a constant velocity.
02 L (4) Double-head solitoFig. 4). The spatial power spec-
r trum of the double-head soliton is also double peaked, con-
e N L sisting of a dominating peak in the positive diffraction range,
1 2 3 4 5 6 1 8 9 X and the weaker peak in the negative diffraction range. One
|A(k)|2 PR can consider such double-head solitons as the nonlinear su-
10° + b ! /\_ ; perposition of a pair of two coupled solitons of positive and
10° ) A ! ! N negative diffraction; however two heads of the soliton do not
105 LA f \\ 5 f \\: f \ N attribute to the two peaks in the domain of spatial frequen-
\ / ‘\HJ A ‘\J l\ cies, and are rather a result of interference of these two spa-
10° \w‘( | . \ {- tial frequencies. The double head soliton, like the midband
107" \\nn, one is never at rest, but runs with a constant velocity, depen-
dent on the parameters.
2 -1 0 1 2 4 The inverted double-head soliton was also observed, simi-

lar to the double-head soliton shown in Fig. 4. The difference

FIG. 3. The envelopé) and the spatial power speciita) of the  is that the dominating peak appears in the negative diffrac-
midband soliton. Everything, except for the initial conditions, is astion range, and the weaker peak, in the positive diffraction
in Fig. 1. range. In other words, the center of mass of the inverted
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double-head soliton is located in the negative diffraction
range(but also very close to zero diffraction poinin con-
trast to the double-head soliton shown in Fig. 4.

IV. DISPERSION RELATION

In order to interpret the above numerical results, also in
order to evaluate analytically the parameters of the solitons,
the harmonic decomposition of the field components was
performed, by considering dominatirgtyvo, or three¢ spatial
harmonics of the field:

A(x,t) = KO A() + Ayt e + Ay(t)eP]. 2

Here the field components with the wave vectkysk; =kg
—-g, and k,=Kky+q are considered. The linear evolution of
waves in the resonatdiEq. (1) keeping only the linear in
field amplitude and conservative terfnesults in a linear :
system of coupled equations for the field components: 4 F

9 At =—idKZAG +imA, +imA,, (3a) 1
0.75 E
IAL ATt =—idKE A +imAy. (3b) 8; ;
The solutiondA/ dt=iwhA;, i1=0,1,2 of (3) exists, however
does not lead to analytically tractable result. FiguKe)5 -0.25F
shows the solution of3). The dashed lines show the disper- 05
sion relations for three uncoupled harmonic components of -0.75F

the field in absence of zero spatial modulation of the fields. a1 E
For nonzero coupling the band gap appears and increases

with increasing coupling of wave components. The param- FIG. 5. Frequencya and diffraction(b) of linearly coupled
eters of the systenB) can be rescaled, and the number of plane waves, depending on the normalized spatial carrier frequency
relevant parameters reduced until two. Those dre Kk=ko/g, as given by the analytical solution ¢8). The curves are
=2m/(dcd), a depth of a modulation induced by the spatially Plotted for different normalized coupling coefficierfts 2m/ (dep):

periodic perturbation, i.e., of a contrast of modulation
fringes; andk=ky/q, the carrier spatial wave nhumber norma

f=0 dashed, and=0.2, f=0.4, solid. In(c) the diffraction coeffi-

| cients followed from(3) (solid line), from (4b) (dashes ling and

ized to the spatial wave number of the modulation. Figure grom (5b) (dashed-pointed lineare shown forf=0.3.

is plotted using these normalized parameters.

negative for small values of. The width of the staggered

Figure §b) shows the effective diffraction coefficient for soliton scales agyo |deg| = Jd/f.

the system of coupled waves calculated aky
=—1/2(92w/ak§ from the dispersion relation given §8). The

The dependence of the diffraction coefficient as followed
from (4b) is plotted by a dashed line in Fig(&, and com-

diffraction, as expected, changed its sign from plus to minupared with the diffraction coefficient as followed fro¢8).

at some spatial frequency.

The correspondence is good for large spatial frequencies

For the analytical treatment we considered either only twgcorresponding in particular to mid-band and staggered soli-
interacting field componentsor the staggered, and midband tons), but gets worse fok— 0 (corresponding to the normal

solitons, where two components are dominaot performed
an asymptotical analysis of the solution @) (for the nor-
mal soliton, where all three components are relevant

In two component case, neglectiig (A,— 0) the solu-
tion of (3) reads

_de

w—7[2|k|—2k2—li\e’f2+(1—2|k|)2]. (4a)
The effective diffractiondy;=-1/27w/ k3 is:
e = A{1 — F2/[F2 + (1 - 2|k|)?¥2. (4b)

The diffraction becomes zero at a wave numbkr:
=(1-\f*3-2)/2, according tq4b).

CSs9. This is because the dispersion relati@@a and (4b)
being valid when two field components dominate the dynam-
ics (which is the case for staggered and midband soljtens

no more valid for normal solitons, with the carrier spatial
wave number centered arourd=0. For normal solitons
three field components are relevant, i.e., the strong homoge-
neous component, and two sidebands of nearly equal rel-
evance. To evaluate the parameters of soliton in this limit we
used the series expansigwith respect tok and f) of the
solution of(3) which for the upper solution branch results in

o =dof[f42 +Kk3(— 1 + 2?) + 8f%k*], (5a)

et = d(1 — 2f? — 48k°f?). (5b)

The asymptotical value of diffraction for the staggered(5) indicates the decrease of the diffraction coefficient, and

CSs(|k|=1/2) is doz=d(1-f1), as follows from(4b), and is

correspondingly of the size of the normal solitRgv \|deg|
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with the increasing amplitude of spatial modulation of re- . @ Vgt + (g2 + 2ig| V |)?
fraction index. The diffraction coefficien®b) is plotted in L=id{ V2-—+ >
Fig. 5c) by the dashed-pointed line, showing a good corre-

spondence fok— 0 with the diffraction coefficient follow- S _ _ o )
ing from the full treatment of3). The coefficientik in spatial Fourier domain is here simply

substituted by the differential operatB=4/0x in space do-
main. Analogously the coefficiemnd in temporal Fourier fre-
V. REDUCED EQUATIONS quency domain is substituted by the time evolution operator

, , dldt in the time domain. We complete the linear pgyiven
The complexity of the full systertil) can be substantially ~ . -
reduced by eliminating the small spatial scales, related Witl’?Olely by the_ operatot. (8)] by nonlinear t_erms, which fi-
the spatial modulation. A possibility for this reduction is nally results in the order parameter equation:
hinted by the above linear analysis. Similarly as one decom-

)+dQ|V|- (8

poses the linearly evolving field into coupled components, dAq(r,t) _ Do ag N 2 R

one can decompose the nonlinearly interacting field into spa- 5t 7\ 1 +|A 2 -1- 1+|AgY1, *L+gV"AlrD).

tially dependent coupled field components: )
A, X, 1) = @ A(X, 1) + Ag(X, e P+ Ay(X, t)e 9], The linear stability analysis aB) reproduces, per defini-

6 tion, the dispersion curv@). In the absence of spatial modu-
lation, the(9) obviously converges int@l). Finally the above

| described adiabatic elimination, using the smallness assump-

tions: Ag=0(1), m=0(g), dg?=0(1/¢), derives(9) system-

atically, by retaining the terms of smallness expansion up to

3 .

(of the order of soliton size The coupled field components the °rdefo(8 ) (see Appendl)c l?ue to the above §mal|ness

A(X,1) (i=0,1,2 depend on the large spatial scale only. assumption _the nor_lllnear term in the reduced@yis iden-

Then, inserting6) into (1), and considering that the spatial tical to that in starting Eq(1).

scales are well separated<X (which, written differently,

means|V|<|q[), one can derive a coupled set of equations v NUMERICAL STUDY: FULL EQUATIONS AND
for coupled field components: REDUCED MODELS

Here the microscopic field\(x,X,t) depends on the smal
spatial scale (of the order of the spatial period of the modu-
lation of refraction inde) as well as on large spatial sca{e

I~y , o\ i , The derived order parameter E§) was checked by com-
— = No(Ag, A1 o) +id(V +iko)“Ag +imA; +imA,, parison of the numerical results from it and from full equa-

ot tion system(1). Figure 6 gives the shapéhe amplitude and
(78) phase profilesof the midband CSs, indicating a good corre-
spondence between the results obtained by madglsnd
IAL, (9). In particular the results indicate a peculiarity of the mid-

=Ny A(Ag,A; o) +id(V +iky 5)?A; ,+imA,. (7b)  band CS: The shapes of the CS always show the main peak,
at ' ’ o and the small peak at the trailing edge of the OSe note
that the amplitude profiles of fields are plotted in Fig. 6, in
Here the nonlinear operatol(Aq,A; ,) are the projections  contrast to intensity profiles in Figs. 1-4, which enhances the
of the nonlinearity into wave vectors centered arolpde-  visibility of the satellite peak. The satellite peak is in an-
spectively(i=0,1,2. We assume here for simpliciy=0. tiphase to the dominating peak, as the phase profile indicates.
(7) is already a significant simplification of the problem, The presence of the small satellite in antiphase to the main
since it considers the variation of the fields on a large spatiadoliton is a good indication that the normal diffractitsec-
scale only. ond order spatial derivatiyds absent and the diffraction of
Further reduction of7) is possible form<dd? [equiva-  the next(third) order is dominating. The soliton shape re-
lently for f=2m/(dg?) <1]. This results in the hierarchy of sembles the temporal pulse shape after linear propagation in
the field component$A; 5/ <|Aq|. Then, one can eliminate a fiber with dominating third order dispersi¢b5], or spatial
adiabatically the weak side-band fields , assuming that pulse shape after linear propagation in the material with
they are enslaved by the dominating central compoignt dominating third order diffractiofil6].
and thus systematically derive a single equation for the order In Fig. 7 the soliton size dependencies on the amplitude of
parameter of the systeitwhich is the field proportional to spatial modulation are depicted. Several families are plotted
the homogeneous field componéy) (see Appendix How-  corresponding to different values of the pump paramBtgr
ever, instead of the systematical derivation, we write dowrwithin the stability range of the CS. Again a good correspon-
phenomenologically the order parameter equation. One catlence between the results of integration of the full Eg.
easily construct the linear part of the order parameter equdsolid circles and the reduced Eq9) open circles is ob-
tion from the dispersion relatiof@) and(5). For definiteness tained. The analytical evaluatioiidashed curveq(4b) and
we chose(4), which is more appropriate for the study of (5b)] are also in a good correspondence with the numerical
midband soliton, which results in: results.
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FIG. 7. The half-width of the normala) and the midbandb)
CS, as calculated from numerical integration of the microscopic
FIG. 6. Amplitude and phase profile of midband solitons, asmodel(1) (the solid circlegand of the mean field modéd) (open
obtained by numerical integration ¢f) with subsequent filtering of ~ circles, depending on the modulation amplitudes. The calculations
spatial spectra, the solid line; and as obtained by numerical integrawere performed for different values of pump parametersOgr
tion of mean field mode{9) with the dispersion relatiopda), the  =1.59, 1.62, 1.65, 1.68, 1.71 in ca&®, and forDy=1.65, 1.68,
dashed line. The parameters for numerical integration, as in Fig. 11.71, 1.74, 1.77 in cag®) (spaced equidistantly within the stability
The soliton is propagating to the rigtgo the satellite is on a trail- range of the soliton The dashed lines are the analytically evaluated
ing edge of the soliton width of the soliton as following frong5b) in case(a), and 4b) in

case(b). The parameters for numerical integration are as in Fig. 1.
VIl. CONCLUSIONS

Concluding, we show that the different families of the piscussions with C. O. Weiss, R. Vilaseca, C. Serrat, and R.
CSs exist in dissipative nonlinear resonators with the refracyerrero are gratefully acknowledged.

tive index modulated in transversal plane, i.e. in nonlinear
photonic crystal resonators. The variety of the families is due APPENDIX
to spatial modulation of the refraction index, whereas only

the normal solitons are possible for transversally homoge- We_ derive here the (_)rder_ parameter equation from the
neous resonators equation systen(i7), by adiabatic elimination of the sideband

: L . field components. We assume that the nonlinear paittof
We derive the order parameter equation, i.e., the equatloﬁe_, the projection of the nonlinearity; /A, A, »), into the

depending on the fields of large spatial scale only. This al-". : . .
lows a more precise study of the asymptotic shapes of thgldeband spatial wave components is of the hlghe_r order of
CSs, which also leads to analytical expressions of the So“toﬁmallr;ess., tlhar_1t_thetrefst of th? rfk][r? tem;g?dn}. Th'f as- d

parameters. In particular the widths of the solitons belongin umption IS fegitimate for most of the nonlinéar systems de-

to different families were analytically estimated, based on ived by using multiscale expan5|cm.7], where one gener-
the order parameter equation. ally assumes two temporal scales: one temporal stale

Among the reported families of solitons we pay Iargest:O(s) associated with the linear effeqidiffraction, resona-

attention to the narrow midband solitons — the solitons witht©" d2etun|ng,. and Fhe other_, slower tempo’?' scalg
the effective diffraction eliminated. The latter, due to their - O(¢) associated with the build-up and saturatioe., non-
small spatial size, might be of interest for parallel informa-!inearity) of the radiation in the resonator. Having this in
tion processing. We prove that the reported effect of sizdnind one can straightforwardly eliminate the sideband field
reduction lies solely on the modification of effective diffrac- COMPONENts , from (7b):
tion of the system, as the reduced K§) perfectly repro- —im
duces the effect. Also, we show indirectly, that the dominat- A p= WAO
ing diffraction is of third order for the midband soliton, as d(V +iky 2
the soliton attains a shape typical for that in material withThe expressiorfA1l) means that the sideband field compo-
dominating third order dispersion. nents are fields that are enslaved by the homogeneous field
component solely due to the scattering on the refraction in-
ACKNOWLEDGMENTS dex grating, and not due to nonlinearity.

The work has been partially supported by SFB 407 of Further simplification of(Al) is possible by employing

DFG, and NATO Collaborative Linkage Grant No. 979050.the smallness conditiohV|<k; 5|, which means that the

(A1)
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spatial scales are well separated, and expandiki in
power series:

Alz:ﬂ( LAV 3V ..)AO_ (A2)
’ dkiZ k1,2 kiZ
Inserting(A2) into (7@ one obtains:

Ao _

ot No(Ag) + ideﬁV2A0 ~vgr V Ag T weiPo. (A3)

With the net diffraction coefficient:

3n? 3m2>
Oei=d| 1 -———-—= |- Ada)
of ( a2k dKd (Ada)
The net group velocity of coupled fold components:
me me
Vgr = 2dkgy + 2dk—— + 2dko——. (A4db)
o o2k} k3

And the oscillation frequency

PHYSICAL REVIEW E 70, 016602(2004)

m2
=—dk5+ —+—. Adc
Weff k(z) dki dk§ ( )

Rewriting (A4a)—(A4c) in terms of modulation depth$
=2m/(d¢?) one obtains

3f2< 1 1

deﬁ:d<1‘7 (k—1)4+(k+1)4>)’ (AS3)

v :2dq<k+f—2< ! + 1 )) (A5b)
or 4\(k-1° (k+1°))

2 1 1
— _ 2 _
Weft = dq2<k ((k— 17 + K+ 1)2>), (A5c)

4
which is compatible with the coefficients i4a), (4b), and
(5) in corresponding limits.
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