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We investigate cavity solitons in nonlinear photonic crystal resonators, i.e., in the nonlinear resonators with
the refractive index periodically modulated in the transverse direction. We study several families of the cavity
solitons:(1) “normal,” and(2) “staggered” solitons, similar to those in conservative nonlinear photonic crys-
tals; (3) “midband” solitons, predicted recently in dissipative nonlinear photonic crystals[K. Staliunas, Phys.
Rev. Lett. 91, 053901(2003)]; and (4) “double head” cavity solitons not reported before. We investigate the
solitons by (1) numerically solving the full microscopic model explicitly accounting for the small scale
refractive index modulation, and(2) adopting a “mean field” approximation, e.g., eliminating the small scale
refractive index modulation.
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I. INTRODUCTION

Cavity solitons(CS), sometimes also named dissipative
spatial solitons, have been theoretically predicted for general
case of bistable nonlinear optical resonators[1], and for dif-
ferent particular bistable nonlinear optical systems: lasers
with saturable absorber[2], two-photon lasers[3], optical
parametric oscillators[4], semiconductor microresonators
[5]. In several systems the CSs have been so far demon-
strated experimentally: in lasers with saturable absorbers[6],
in four wave mixing[7], and in semiconductor microresona-
tors [8]. The interest on CS is in particular stimulated by
their potential application for parallel information processing
and storage[9]. The CS being bistable can be switched on
and off, therefore they can serve as elementary memory ele-
ment (can store one bit of information). The CSs can be
excited in arbitrary place in the transverse plane of the reso-
nator, which gives additional possibilities of their manipula-
tion and application.

The most of the previous studies of CSs[1–9] assume that
the nonlinear resonators are homogeneous in lateral direc-
tion. In fact the lateral boundary conditions are sometimes
considered, e.g., accounting for the finite width of the aper-
ture of the optical system. Here, under lateral homogeneity,
we mean that the bulk area of the system is homogeneous on
the spatial scale of the width of soliton, or less. Recent tech-
nologies allow manufacturing nonlinear resonators with
some parameters(refraction index, nonlinearity, losses) lat-
erally modulated on the spatial scale of a micron and less,
i.e., on the scale much less than the typical spatial size of
solitons. The typical size of the experimentally observed
solitons is several tenths of microns: in the ever realized
smallest soliton supporting systems, the semiconductor mi-
croresonators, with full cavity lengthL<5 mm, the width of
the soliton isx0<15 mm as observed in[8]. The rapidly
advancing micro- and nanotechnologies give a motivation
for our study of cavity solitons in nonlinear resonators with

spatially modulated refraction index on micron and submi-
cron scale, i.e., in nonlinear photonic crystal resonators.

Another motivation follows from the results of the recent
studies of spatial solitons in nonlinearnonresonatorphoto-
nic crystals[10], where the nonlinearspatial propagation of
the fields in the media with spatially modulated refraction
index is studied. Recently the discrete Kerr-type solitons in
propagation in materials withxs3d nonlinearity[11], as well
as discrete parametric solitons in propagation in materials
with xs2d nonlinearity [12] have been shown. These studies
reveal a variety of families of discrete solitons. The basic
ones are:(1) “normal” solitons with the carrier spatial wave
number being around zero. They are the analogs of the spa-
tial solitons in homogeneous nonlinear media;(2) “band-
edge,” or “staggered” solitons, with the carrier spatial wave
number being around half of the modulation wave number.
The field phase changes its value byp between the modula-
tion fringes across the staggered soliton, and the effective
diffraction is of negative sign. In addition to these basic “nor-
mal” and “staggered” solitons, several intermediate discrete
soliton states were reported(“zoology” of discrete solitons
[13]). These results allow to expect that also the cavity soli-
tons in nonlinear photonic crystal resonators can display a
variety of shapes. Indeed several kinds of cavity solitons
have been recently predicted in photonic crystal resonators
[14]: These are “normal” and “staggered” cavity solitons,
similar to those in conservative nonlinear photonic crystals,
as described above. These are also narrow “midband” soli-
tons, with the carrier spatial frequency between those for the
“normal” and for the “staggered” solitons. The physical ra-
tionale behind the midband solitons is that if the effective
diffraction is of positive sign for normal solitons, and of
negative sign for band-edge ones, then there should be a
point where the effective diffraction is zero, if the diffraction
dependence curve is continuous. The spatial spectra of the
“midband” soliton are centered around that zero-diffraction
point, i.e., located close to the middle of the band of ex-
tended waves(hence the term midband solitons). Since the
effective diffraction vanishes for the midband CSs, their size
is no more limited by diffraction, but can be drastically re-
duced, comparing with the width of the “normal” solitons,*Email address: kestutis.staliunas@icrea.es
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i.e., literally to one wavelength[14]. The latter result gives a
strong motivation to our studies, since the reduction of the
size of the soliton is very desirable for technological appli-
cations.

In the present article we give a detailed numerical study
of the above described families of the cavity solitons in non-
linear photonic crystal resonators. We also report a new fam-
ily of the cavity solitons—the “double head” one.

Part of the results is obtained by a direct numerical inte-
gration of the equations for a laser with a saturable absorber
for the laterally modulated refraction index. This(micro-
scopic) model explicitly accounts for the small scale refrac-
tive index modulation. We chose this particular system of a
laser with saturable absorber, because mathematically it is
perhaps the simplest system, and physically is the most para-
digmatic model for the optical bistability and for the CSs[2].
These results, however, can be generalized to other systems
supporting cavity solitons.

Additionally we use a kind of “mean field” approach for
the study of soliton properties, i.e., we reduce the full micro-
scopic(small spatial scale) model by the equation accounting
for the large scale spatial variation of the fields. The modu-
lation of the refraction index is then accounted by respec-
tively modified diffraction of the system. This results in a
substantial reduction of the complexity, allows more precise
studies of the asymptotic shapes of the CSs, also leads to
analytical expressions of the soliton parameters(in particular
of the width) depending on the parameters of the system.

II. MODEL

The class A lasers with fast saturable absorber in paraxial-
and mean field approximations is described by:

] AsrW,td
] t

= S D0

1 + uAu2
− 1 −

a0

1 + uAu2/Ia

+ id¹2 + g¹2 + iVsrWdD
3AsrW,td. s1d

The right-hand side contains the terms of saturating gain,
linear losses, saturating losses, diffraction, diffusion, and
spatially varying refractive index:VsrWd=mseiqx+e−iqxd, re-
spectively.D0 is the unsaturated gain,a0 is the unsaturated
absorption,Ia is the saturation intensity of the absorber,d
=LlQ/ s4pd is the diffraction coefficient(l is the wave-
length of the radiation,L and Q are the full length and fi-
nesse of the resonator), g is the diffusion coefficient(usually
g!d), andm andq are the amplitude and the wave number
of the refractive index modulation in the transverse direction
of resonator. See, e.g., also[2] for detailed description of the
model (1).

The diffusion term lumps together the material diffusion
(e.g., diffusion of population inversion), the limited width of
the gain line, as well as the spatial frequency filtering. In
most systems diffusion can be considered small compared
with the diffraction (e.g., if the resonator mode is narrow
compared with the atomic gain line). In our numerical study
the diffusion/diffraction ratio is fixed tog/d=10−4, but the
results depend only negligibly on this ratio.

The field is considered to be dependent on one transverse
dimension, and evolving in time. The field variation along

the longitudinal direction was neglected. This mean field ap-
proximation is legitimate to the short and high-finesse reso-
nators, like used to generate spatial solitons, e.g., in[8]. The
numerical integration was performed using a split-step tech-
nique: by changing from the transverse space domain to the
spatial Fourier domain in every integration step, which im-
poses periodic boundary conditions in transverse space of the
resonator.

III. NUMERICAL STUDY OF THE FULL MODEL

Figures 1–4 show the typical spatial profiles(a) and spa-
tial power spectra(b) of stable cavity solitons, as obtained by
numerical integration of(1).

(1) Normal soliton. This is the only possible family of
solitons in the absence of spatial modulation of refraction
index. When the refractive index is spatially modulated(with
the spatial wave-numberq), the modulation fringes of the
soliton envelope appear[Fig. 1(a)] with the depth propor-
tional to the amplitude of the refraction index modulationm.
In a limit of weak modulationm/ sdq2d!1 the modulation
can be considered perturbatively. The spatial power spectrum
[Fig. 1(b)] consists of a strong central component(at spatial
carrier frequency), and of progressively decreasing side-
bands. The effective diffraction of the radiation field is of
positive sign, and is only weakly(perturbatively) effected by
the lateral modulation of refraction index.

The dashed line in Fig. 1(a) shows the envelope of the
soliton on a large spatial scale. The large scale soliton enve-

FIG. 1. The envelope(a) and the spatial power spectra(b) for
the normal cavity solitons, as obtained by numerical integration of
(1). Dashed lines represent the envelopes of the homogeneous field
component of the soliton, obtained by filtering out spatial spectral
components(retaining the spectral components as indicated by ar-
row in (b)). The parameters are:Ia=0.01,a0=5, D0=1.7, d=1, q
=15.89,m=25 ff =2m/ sdq2d=0.198g.
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lope was obtained by filtering out the sidebands from the
spatial spectrum, and, using inverse Fourier transform, re-
covering the soliton constituents attributed to dominating
spatial frequency[retaining the band of spatial frequencies as
indicated by arrow in Fig. 1(b)].

(2) Staggered soliton(Fig. 2). The field phase changes by
p between the neighboring modulation fringes, therefore the
field amplitude is modulated by 100%. The spatial power
spectrum contains two strong components with the spatial
frequencies atk0< ±q/2. The staggered soliton is wider than

the normal one for the used parameter set(note the different
spatial scales in Fig. 1 and Fig. 2). The staggered soliton has
no analog in laterally homogeneous systems(the small scale
spatial modulation by 100% cannot be considered as a small
perturbation of soliton shape), and the effective diffraction of
the soliton, as shown below, is of a negative sign.

(3) Midband soliton(Fig. 3). The spatial power spectrum
contains a strong component centered at a spatial frequency
0,k0,q/2, i.e., at the wave number corresponding to zero
diffraction. (Recall that the effective diffraction for normal
soliton is positive, and for staggered soliton is negative, then
there should exist a wave number with zero diffraction in
between, if the dispersion curve is continuous.) The soliton is
in general narrower in space than the normal and the stag-
gered ones. Differently from the normal and the staggered
solitons the midband soliton is never stationary, but moves
with a constant velocity.

(4) Double-head soliton(Fig. 4). The spatial power spec-
trum of the double-head soliton is also double peaked, con-
sisting of a dominating peak in the positive diffraction range,
and the weaker peak in the negative diffraction range. One
can consider such double-head solitons as the nonlinear su-
perposition of a pair of two coupled solitons of positive and
negative diffraction; however two heads of the soliton do not
attribute to the two peaks in the domain of spatial frequen-
cies, and are rather a result of interference of these two spa-
tial frequencies. The double head soliton, like the midband
one is never at rest, but runs with a constant velocity, depen-
dent on the parameters.

The inverted double-head soliton was also observed, simi-
lar to the double-head soliton shown in Fig. 4. The difference
is that the dominating peak appears in the negative diffrac-
tion range, and the weaker peak, in the positive diffraction
range. In other words, the center of mass of the inverted

FIG. 2. The envelope(a) and the spatial power spectra(b) of a
staggered soliton. Everything, except for the initial conditions, is as
in Fig. 1.

FIG. 3. The envelope(a) and the spatial power spectra(b) of the
midband soliton. Everything, except for the initial conditions, is as
in Fig. 1.

FIG. 4. The envelope(a) and the spatial power spectra(b) of the
double head soliton. Everything, except for the initial conditions, is
as in Fig. 1.
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double-head soliton is located in the negative diffraction
range(but also very close to zero diffraction point), in con-
trast to the double-head soliton shown in Fig. 4.

IV. DISPERSION RELATION

In order to interpret the above numerical results, also in
order to evaluate analytically the parameters of the solitons,
the harmonic decomposition of the field components was
performed, by considering dominating(two, or three) spatial
harmonics of the field:

Asx,td = eik0xfA0std + A1stde−iqx + A2stde+iqxg. s2d

Here the field components with the wave vectorsk0, k1=k0
−q, and k2=k0+q are considered. The linear evolution of
waves in the resonator[Eq. (1) keeping only the linear in
field amplitude and conservative terms] results in a linear
system of coupled equations for the field components:

] A0/] t = − idk0
2A0 + imA1 + imA2, s3ad

] A1,2/] t = − idk1,2
2 A1,2+ imA0. s3bd

The solution]Ai /]t= ivAi, i =0,1,2 of (3) exists, however
does not lead to analytically tractable result. Figure 5(a)
shows the solution of(3). The dashed lines show the disper-
sion relations for three uncoupled harmonic components of
the field in absence of zero spatial modulation of the fields.
For nonzero coupling the band gap appears and increases
with increasing coupling of wave components. The param-
eters of the system(3) can be rescaled, and the number of
relevant parameters reduced until two. Those aref
=2m/ sdq2d, a depth of a modulation induced by the spatially
periodic perturbation, i.e., of a contrast of modulation
fringes; andk=k0/q, the carrier spatial wave number normal-
ized to the spatial wave number of the modulation. Figure 5
is plotted using these normalized parameters.

Figure 5(b) shows the effective diffraction coefficient for
the system of coupled waves calculated asdeff
=−1/2]2v /]k0

2 from the dispersion relation given by(3). The
diffraction, as expected, changed its sign from plus to minus
at some spatial frequency.

For the analytical treatment we considered either only two
interacting field components(for the staggered, and midband
solitons, where two components are dominant), or performed
an asymptotical analysis of the solution of(3) (for the nor-
mal soliton, where all three components are relevant).

In two component case, neglectingA2 sA2→0d the solu-
tion of (3) reads

v =
dq2

2
f2uku − 2k2 − 1 ± Îf2 + s1 − 2ukud2g. s4ad

The effective diffractiondeff=−1/2]2v /]k0
2 is:

deff = dh1 − f2/ff2 + s1 − 2ukud2g3/2j. s4bd

The diffraction becomes zero at a wave number:k
=s1−Îf4/3− f2d /2, according to(4b).

The asymptotical value of diffraction for the staggered
CSssuku=1/2d is deff=ds1− f−1d, as follows from(4b), and is

negative for small values off. The width of the staggered
soliton scales asx0~Îudeffu=Îd/ f.

The dependence of the diffraction coefficient as followed
from (4b) is plotted by a dashed line in Fig. 5(c), and com-
pared with the diffraction coefficient as followed from(3).
The correspondence is good for large spatial frequencies
(corresponding in particular to mid-band and staggered soli-
tons), but gets worse fork→0 (corresponding to the normal
CSs). This is because the dispersion relation(4a) and (4b)
being valid when two field components dominate the dynam-
ics (which is the case for staggered and midband solitons) is
no more valid for normal solitons, with the carrier spatial
wave number centered aroundk=0. For normal solitons
three field components are relevant, i.e., the strong homoge-
neous component, and two sidebands of nearly equal rel-
evance. To evaluate the parameters of soliton in this limit we
used the series expansion(with respect tok and f) of the
solution of(3) which for the upper solution branch results in

v = dq2ff2/2 + k2s− 1 + 2f2d + 8f2k4g, s5ad

deff = ds1 − 2f2 − 48k2f2d. s5bd

(5) indicates the decrease of the diffraction coefficient, and
correspondingly of the size of the normal solitonx0~Îudeffu

FIG. 5. Frequency(a) and diffraction (b) of linearly coupled
plane waves, depending on the normalized spatial carrier frequency
k=k0/q, as given by the analytical solution of(3). The curves are
plotted for different normalized coupling coefficientsf =2m/ sdq2d:
f =0 dashed, andf =0.2, f =0.4, solid. In(c) the diffraction coeffi-
cients followed from(3) (solid line), from (4b) (dashes line), and
from (5b) (dashed-pointed line) are shown forf =0.3.
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with the increasing amplitude of spatial modulation of re-
fraction index. The diffraction coefficient(5b) is plotted in
Fig. 5(c) by the dashed-pointed line, showing a good corre-
spondence fork→0 with the diffraction coefficient follow-
ing from the full treatment of(3).

V. REDUCED EQUATIONS

The complexity of the full system(1) can be substantially
reduced by eliminating the small spatial scales, related with
the spatial modulation. A possibility for this reduction is
hinted by the above linear analysis. Similarly as one decom-
poses the linearly evolving field into coupled components,
one can decompose the nonlinearly interacting field into spa-
tially dependent coupled field components:

Asx,X,td = eik0xfA0sX,td + A1sX,tde−iqx + A2sX,tde+iqxg.

s6d

Here the microscopic fieldAsx,X,td depends on the small
spatial scalex (of the order of the spatial period of the modu-
lation of refraction index), as well as on large spatial scaleX
(of the order of soliton size). The coupled field components
AisX,td si =0,1,2d depend on the large spatial scale only.
Then, inserting(6) into (1), and considering that the spatial
scales are well separatedx!X (which, written differently,
meansu¹ u! uqu), one can derive a coupled set of equations
for coupled field components:

] A0

] t
= N0sA0,A1,2d + ids¹ + ik0d2A0 + imA1 + imA2,

s7ad

] A1,2

] t
= N1,2sA0,A1,2d + ids¹ + ik1,2d2A1,2+ imA0. s7bd

Here the nonlinear operatorsNisA0,A1,2d are the projections
of the nonlinearity into wave vectors centered aroundki, re-
spectivelysi =0,1,2d. We assume here for simplicityg=0.
(7) is already a significant simplification of the problem,
since it considers the variation of the fields on a large spatial
scale only.

Further reduction of(7) is possible form!dq2 [equiva-
lently for f =2m/ sdq2d!1]. This results in the hierarchy of
the field componentsuA1,2u! uA0u. Then, one can eliminate
adiabatically the weak side-band fieldsA1,2 assuming that
they are enslaved by the dominating central componentA0,
and thus systematically derive a single equation for the order
parameter of the system(which is the field proportional to
the homogeneous field componentA0) (see Appendix). How-
ever, instead of the systematical derivation, we write down
phenomenologically the order parameter equation. One can
easily construct the linear part of the order parameter equa-
tion from the dispersion relation(4) and(5). For definiteness
we chose(4), which is more appropriate for the study of
midband soliton, which results in:

L̂ = idS¹2 −
q2

2
+

Îf2q4 + sq2 + 2iqu ¹ ud2

2
D + dqu ¹ u. s8d

The coefficientik in spatial Fourier domain is here simply
substituted by the differential operator¹=] /]x in space do-
main. Analogously the coefficientiv in temporal Fourier fre-
quency domain is substituted by the time evolution operator
] /]t in the time domain. We complete the linear part[given

solely by the operatorL̂ (8)] by nonlinear terms, which fi-
nally results in the order parameter equation:

] A0srW,td
] t

= S D0

1 + uA0u2
− 1 −

a0

1 + uA0u2/Ia

+ L̂ + g¹2DA0srW,td.

s9d

The linear stability analysis of(9) reproduces, per defini-
tion, the dispersion curve(4). In the absence of spatial modu-
lation, the(9) obviously converges into(1). Finally the above
described adiabatic elimination, using the smallness assump-
tions: A0=Os1d, m=Os«d, dq2=Os1/«d, derives(9) system-
atically, by retaining the terms of smallness expansion up to
the orderOs«3d (see Appendix). Due to the above smallness
assumption the nonlinear term in the reduced Eq.(9) is iden-
tical to that in starting Eq.(1).

VI. NUMERICAL STUDY: FULL EQUATIONS AND
REDUCED MODELS

The derived order parameter Eq.(9) was checked by com-
parison of the numerical results from it and from full equa-
tion system(1). Figure 6 gives the shapes(the amplitude and
phase profiles) of the midband CSs, indicating a good corre-
spondence between the results obtained by models(1) and
(9). In particular the results indicate a peculiarity of the mid-
band CS: The shapes of the CS always show the main peak,
and the small peak at the trailing edge of the CS.(We note
that the amplitude profiles of fields are plotted in Fig. 6, in
contrast to intensity profiles in Figs. 1–4, which enhances the
visibility of the satellite peak.) The satellite peak is in an-
tiphase to the dominating peak, as the phase profile indicates.
The presence of the small satellite in antiphase to the main
soliton is a good indication that the normal diffraction(sec-
ond order spatial derivative) is absent and the diffraction of
the next(third) order is dominating. The soliton shape re-
sembles the temporal pulse shape after linear propagation in
a fiber with dominating third order dispersion[15], or spatial
pulse shape after linear propagation in the material with
dominating third order diffraction[16].

In Fig. 7 the soliton size dependencies on the amplitude of
spatial modulation are depicted. Several families are plotted
corresponding to different values of the pump parameterD0
within the stability range of the CS. Again a good correspon-
dence between the results of integration of the full Eq.(1)
(solid circles) and the reduced Eq.(9) open circles is ob-
tained. The analytical evaluations(dashed curves) [(4b) and
(5b)] are also in a good correspondence with the numerical
results.
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VII. CONCLUSIONS

Concluding, we show that the different families of the
CSs exist in dissipative nonlinear resonators with the refrac-
tive index modulated in transversal plane, i.e. in nonlinear
photonic crystal resonators. The variety of the families is due
to spatial modulation of the refraction index, whereas only
the normal solitons are possible for transversally homoge-
neous resonators.

We derive the order parameter equation, i.e., the equation
depending on the fields of large spatial scale only. This al-
lows a more precise study of the asymptotic shapes of the
CSs, which also leads to analytical expressions of the soliton
parameters. In particular the widths of the solitons belonging
to different families were analytically estimated, based on
the order parameter equation.

Among the reported families of solitons we pay largest
attention to the narrow midband solitons — the solitons with
the effective diffraction eliminated. The latter, due to their
small spatial size, might be of interest for parallel informa-
tion processing. We prove that the reported effect of size
reduction lies solely on the modification of effective diffrac-
tion of the system, as the reduced Eq.(9) perfectly repro-
duces the effect. Also, we show indirectly, that the dominat-
ing diffraction is of third order for the midband soliton, as
the soliton attains a shape typical for that in material with
dominating third order dispersion.
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APPENDIX

We derive here the order parameter equation from the
equation system(7), by adiabatic elimination of the sideband
field components. We assume that the nonlinear part of(7b),
i.e., the projection of the nonlinearityN1,2sA0,A1,2d, into the
sideband spatial wave components is of the higher order of
smallness, than the rest of the r.h.s. terms of(7b). This as-
sumption is legitimate for most of the nonlinear systems de-
rived by using multiscale expansion[17], where one gener-
ally assumes two temporal scales: one temporal scalet1
=Os«d associated with the linear effects(diffraction, resona-
tor detuning), and the other, slower temporal scalet2
=Os«2d associated with the build-up and saturation(i.e., non-
linearity) of the radiation in the resonator. Having this in
mind one can straightforwardly eliminate the sideband field
componentsA1,2 from (7b):

A1,2=
− im

ids¹ + ik1,2d2A0. sA1d

The expression(A1) means that the sideband field compo-
nents are fields that are enslaved by the homogeneous field
component solely due to the scattering on the refraction in-
dex grating, and not due to nonlinearity.

Further simplification of(A1) is possible by employing
the smallness conditionu¹ u! uk1,2u, which means that the

FIG. 6. Amplitude and phase profile of midband solitons, as
obtained by numerical integration of(1) with subsequent filtering of
spatial spectra, the solid line; and as obtained by numerical integra-
tion of mean field model(9) with the dispersion relation(4a), the
dashed line. The parameters for numerical integration, as in Fig. 1.
The soliton is propagating to the right(so the satellite is on a trail-
ing edge of the soliton).

FIG. 7. The half-width of the normal(a) and the midband(b)
CS, as calculated from numerical integration of the microscopic
model(1) (the solid circles) and of the mean field model(9) (open
circles), depending on the modulation amplitudes. The calculations
were performed for different values of pump parameters forD0

=1.59, 1.62, 1.65, 1.68, 1.71 in case(a), and for D0=1.65, 1.68,
1.71, 1.74, 1.77 in case(b) (spaced equidistantly within the stability
range of the soliton). The dashed lines are the analytically evaluated
width of the soliton as following from(5b) in case(a), and 4(b) in
case(b). The parameters for numerical integration are as in Fig. 1.
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spatial scales are well separated, and expanding(A1) in
power series:

A1,2=
m

dk1,2
2 S1 +

2i¹

k1,2
−

3¹2

k1,2
2 + ¯DA0. sA2d

Inserting(A2) into (7a) one obtains:

] A0

] t
= N0sA0d + ideff¹

2A0 − vgr ¹ A0 − iveffA0. sA3d

With the net diffraction coefficient:

deff = dS1 −
3m2

d2k1
4 −

3m2

d2k2
4D . sA4ad

The net group velocity of coupled fold components:

vgr = 2dk0 + 2dk1
m2

d2k1
4 + 2dk2

m2

d2k2
4 . sA4bd

And the oscillation frequency

veff = − dk0
2 +

m2

dk1
2 +

m2

dk2
2 . sA4cd

Rewriting (A4a)–(A4c) in terms of modulation depthsf
=2m/ sdq2d one obtains

deff = dS1 −
3f2

4
S 1

sk − 1d4 +
1

sk + 1d4DD , sA5ad

vgr = 2dqSk +
f2

4
S 1

sk − 1d3 +
1

sk + 1d3DD , sA5bd

veff = − dq2Sk2 −
f2

4
S 1

sk − 1d2 +
1

sk + 1d2DD , sA5cd

which is compatible with the coefficients in(4a), (4b), and
(5) in corresponding limits.

[1] D. W. McLaughlin, J. V. Moloney, and A. C. Newell, Phys.
Rev. Lett. 51, 75 (1983); N. N. Rosanov and G. V. Khodova,
Opt. Spectrosc.65, 449 (1988); M. Tlidi, P. Mandel, and R.
Lefever, Phys. Rev. Lett.73, 640 (1994).

[2] N. N. Rosanov, J. Opt. Soc. Am. B7, 1057 (1990), S. V.
Fedorov, A. G. Vladimirov, G V. Khodova, and N. N. Ro-
sanov, Phys. Rev. E61, 5814(2000).

[3] R. Vilaseca, M. C. Torrent, J. García-Ojalvo, M. Brambilla,
and M. San Miguel, Phys. Rev. Lett.87, 083902(2001).

[4] K. Staliunas and V. J. Sanchez-Morcillo, Opt. Commun.139,
306 (1997); C. Etrich, U. Pechel, and F. Lederer, Phys. Rev.
Lett. 79, 2454 (1997); K. Staliunas and V. J. Sanchez-
Morcillo, Phys. Rev. A57, 1454(1998); M. Tlidi, P. Mandel,
and M. Haelterman, Phys. Rev. E56, 6524 (1997); M. Tlidi
and P. Mandel, Phys. Rev. A56, R2575(1999).

[5] D. Michaelis, U. Peschel, and F. Lederer, Phys. Rev. A56,
R3366 (1997); M. Brambilla, L. A. Lugiato, F. Prati, L.
Spinelli, and W. J. Firth, Phys. Rev. Lett.79, 2042(1997).

[6] V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev. A
56, 1582 (1997); G. Slekys, K. Staliunas, and C. O. Weiss,
Opt. Commun.149, 113 (1998).

[7] V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev.
Lett. 81, 2236(1998).

[8] V. B. Taranenko, I. Ganne, R. J. Kuszelewicz, and C. O. Weiss,

Phys. Rev. A61, 063818(2000); S. Barland, Nature(London)
419, 699 (2002).

[9] G. S. McDonald and W. J. Firth, J. Opt. Soc. Am. B7, 1328
(1990); W. J. Firth and A. J. Scroggie, Phys. Rev. Lett.76,
1623 (1996).

[10] D. N. Cristodoulides and R. I. Joseph, Opt. Lett.13, 794
(1988); A. Aceves, C. De. Angeles, T. Pechel, R. Muschall, F.
Lederer, S. Trillo, and S. Wabnitz, Phys. Rev. E53, 1172
(1996).

[11] A. C. Scott and L. Macneil, Phys. Lett.98A, 87 (1983); S.
Darmanyan, A. Kobyakov, F. Lederer, and L. Vazquez, Phys.
Rev. B 59, 5994(1998).

[12] A. Kobyakov, S. Darmanyan, T. Pertsch, and F. Lederer, Phys.
Rev. E 57, 2344(1998); T. Pechel, U. Peschel, and F. Lederer,
ibid. 57, 1127(1998).

[13] See, e.g., F. Lederer, S. Darmanyan, and A. Kobyakov, inSpa-
tial Solitons, edited by S. Trillo and W. Torruellas(Springer,
Heidelberg, 2001).

[14] K. Staliunas, Phys. Rev. Lett.91, 053901(2003).
[15] M. Miyagi and S. Nishida, Appl. Opt.18, 678 (1979).
[16] H. S. Eisenberg, Y. Silberberg, R. Marandotti, and J. S. Aitchi-

son, Phys. Rev. Lett.85, 1863(2000).
[17] K. Staliunas, Phys. Rev. A48, 1573 (1993); J. Lega, J. V.

Moloney, and A. C. Newell, Phys. Rev. Lett.73, 2978(1994).

MIDBAND SOLITONS IN NONLINEAR PHOTONIC… PHYSICAL REVIEW E 70, 016602(2004)

016602-7


